Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139468

RESUMO

Chronic obstructive pulmonary disease (COPD), often caused by smoking, is a chronic lung disease with systemic manifestations including metabolic comorbidities. This study investigates adaptive and pathological alterations in adipose and skeletal muscle tissue following cigarette smoke exposure using in vivo and in vitro models. Mice were exposed to cigarette smoke or air for 72 days and the pre-adipose cell line 3T3-L1 was utilized as an in vitro model. Cigarette smoke exposure decreased body weight, and the proportional loss in fat mass was more pronounced than the lean mass loss. Cigarette smoke exposure reduced adipocyte size and increased adipocyte numbers. Adipose macrophage numbers and associated cytokine levels, including interleukin-1ß, interleukine-6 and tumor necrosis factor-α were elevated in smoke-exposed mice. Muscle strength and protein synthesis signaling were decreased after smoke exposure; however, muscle mass was not changed. In vitro studies demonstrated that lipolysis and fatty acid oxidation were upregulated in cigarette smoke-exposed pre-adipocytes. In conclusion, cigarette smoke exposure induces a loss of whole-body fat mass and adipose atrophy, which is likely due to enhanced lipolysis.


Assuntos
Tecido Adiposo , Fumar Cigarros , Músculo Esquelético , Fumaça , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fumaça/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo
2.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L266-L280, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699290

RESUMO

Chronic obstructive pulmonary disease (COPD) is often associated with intestinal comorbidities. In this study, changes in intestinal homeostasis and immunity in a cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD model were investigated. Mice were exposed to cigarette smoke or air for 72 days, except days 42, 52, and 62 on which the mice were treated with saline or LPS via intratracheal instillation. Cigarette smoke exposure increased the airway inflammatory cell numbers, mucus production, and different inflammatory mediators, including C-reactive protein (CRP) and keratinocyte-derived chemokine (KC), in bronchoalveolar lavage (BAL) fluid and serum. LPS did not further impact airway inflammatory cell numbers or mucus production but decreased inflammatory mediator levels in BAL fluid. T helper (Th) 1 cells were enhanced in the spleen after cigarette smoke exposure; however, in combination with LPS, cigarette exposure caused an increase in Th1 and Th2 cells. Histomorphological changes were observed in the proximal small intestine after cigarette smoke exposure, and addition of LPS had no effect. Cigarette smoke activated the intestinal immune network for IgA production in the distal small intestine that was associated with increased fecal sIgA levels and enlargement of Peyer's patches. Cigarette smoke plus LPS decreased fecal sIgA levels and the size of Peyer's patches. In conclusion, cigarette smoke with or without LPS affects intestinal health as observed by changes in intestinal histomorphology and immune network for IgA production. Elevated systemic mediators might play a role in the lung-gut cross talk. These findings contribute to a better understanding of intestinal disorders related to COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Homeostase , Imunoglobulina A/efeitos adversos , Imunoglobulina A/metabolismo , Imunoglobulina A Secretora/metabolismo , Imunoglobulina A Secretora/farmacologia , Lipopolissacarídeos/efeitos adversos , Pulmão/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Nicotiana
3.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L251-L265, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699308

RESUMO

Brain-related comorbidities are frequently observed in chronic obstructive pulmonary disease (COPD) and are related to increased disease progression and mortality. To date, it is unclear which mechanisms are involved in the development of brain-related problems in COPD. In this study, a cigarette smoke and lipopolysaccharide (LPS) exposure murine model was used to induce COPD-like features and assess the impact on brain and behavior. Mice were daily exposed to cigarette smoke for 72 days, except for days 42, 52, and 62, on which mice were intratracheally exposed to the bacterial trigger LPS. Emphysema and pulmonary inflammation as well as behavior and brain pathology were assessed. Cigarette smoke-exposed mice showed increased alveolar enlargement and numbers of macrophages and neutrophils in bronchoalveolar lavage. Cigarette smoke exposure resulted in lower body weight, which was accompanied by lower serum leptin levels, more time spent in the inner zone of the open field, and decreased claudin-5 and occludin protein expression levels in brain microvessels. Combined cigarette smoke and LPS exposure resulted in increased locomotion and elevated microglial activation in the hippocampus of the brain. These novel findings show that systemic inflammation observed after combined cigarette smoke and LPS exposure in this COPD model is associated with increased exploratory behavior. Findings suggest that neuroinflammation is present in the brain area involved in cognitive functioning and that blood-brain barrier integrity is compromised. These findings can contribute to our knowledge about possible processes involved in brain-related comorbidities in COPD, which is valuable for optimizing and developing therapy strategies.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Encéfalo/metabolismo , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Inflamação/patologia , Lipopolissacarídeos/efeitos adversos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/patologia , Nicotiana
4.
Front Cell Dev Biol ; 9: 680902, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485278

RESUMO

Cigarette smoke exposure during pregnancy and lactation is associated with adverse pregnancy outcomes. Here, we investigated the effects of maternal smoke exposure on pregnancy and offspring immunity and explored whether, epidermal growth factor (EGF), an important growth-promoting factor in human colostrum and milk, might be a possible missing link in maternal smoke exposure and changes in infants' immune responses. Pregnant BALB/c mice were exposed to either cigarette smoke or air during gestation and lactation, and effects on pulmonary inflammation in dams and immune responses in offspring were examined. Maternal smoke exposure increased airway hyperresponsiveness and accumulation of inflammatory cells in the lungs of pregnant dams compared to non-pregnant dams. The E-cadherin protein expression was reduced in mammary glands of cigarette smoke-exposed pregnant dams. EGF levels were higher in mammary glands and serum of smoke-exposed pregnant dams compared to air-exposed pregnant dams. Offspring from cigarette smoke-exposed dams exhibited elevated levels of IL-17A, MCP-1, IL-22, and IL-13 in anti-CD3 stimulated spleen cell culture supernatants. EGF levels were also increased in serum of offspring from smoke-exposed dams. A positive correlation was observed between serum EGF levels and neutrophil numbers in bronchoalveolar lavage fluid of the dams. Interestingly, IL-17A, MCP-1, IL-22, IL13, and IFN-γ levels in anti-CD3 stimulated spleen cell culture supernatants of male pups also showed a positive correlation with EGF serum levels. In summary, our results reveal that maternal smoke exposure predisposes dams to exacerbated airway inflammation and offspring to exacerbated immune responses and both phenomena are associated with elevated EGF concentrations.

5.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066693

RESUMO

Chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) is featured by oxidative stress and chronic inflammation. Due to the poor efficacy of standard glucocorticoid therapy, new treatments are required. Here, we investigated whether the novel compound SUL-151 with mitoprotective properties can be used as a prophylactic and therapeutic treatment in a murine CS-induced inflammation model. SUL-151 (4 mg/kg), budesonide (500 µg/kg), or vehicle were administered via oropharyngeal instillation in this prophylactic and therapeutic treatment setting. The number of immune cells was determined in the bronchoalveolar lavage fluid (BALF). Oxidative stress response, mitochondrial adenosine triphosphate (ATP) production, and mitophagy-related proteins were measured in lung homogenates. SUL-151 significantly decreased more than 70% and 50% of CS-induced neutrophils in BALF after prophylactic and therapeutic administration, while budesonide showed no significant reduction in neutrophils. Moreover, SUL-151 prevented the CS-induced decrease in ATP and mitochondrial mtDNA and an increase in putative protein kinase 1 expression in the lung homogenates. The concentration of SUL-151 was significantly correlated with malondialdehyde level and radical scavenging activity in the lungs. SUL-151 inhibited the increased pulmonary inflammation and mitochondrial dysfunction in this CS-induced inflammation model, which implied that SUL-151 might be a promising candidate for COPD treatment.


Assuntos
Fumar Cigarros/efeitos adversos , Neutrófilos/patologia , Piperazinas/uso terapêutico , Animais , Brônquios/patologia , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Interleucina-8/biossíntese , Pulmão/patologia , Camundongos Endogâmicos BALB C , Neutrófilos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Piperazinas/administração & dosagem , Piperazinas/química , Piperazinas/farmacologia , Pneumonia/tratamento farmacológico , Proteínas Quinases/metabolismo
6.
Front Immunol ; 12: 797376, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003121

RESUMO

Increased exposure to household air pollution and ambient air pollution has become one of the world's major environmental health threats. In developing and developed countries, environmental cigarette smoke (CS) exposure is one of the main sources of household air pollution (HAP). Moreover, results from different epidemiological and experimental studies indicate that there is a strong association between HAP, specifically CS exposure, and the development of allergic diseases that often persists into later life. Here, we investigated the impact of prenatal and postnatal CS exposure on offspring susceptibility to the development of allergic airway responses by using a preclinical mouse model. Pregnant BALB/c mice were exposed to either CS or air during pregnancy and lactation and in order to induce allergic asthma the offspring were sensitized and challenged with house dust mite (HDM). Decreased lung function parameters, like dynamic compliance and pleural pressure, were observed in PBS-treated offspring born to CS-exposed mothers compared to offspring from air-exposed mothers. Maternal CS exposure significantly increased the HDM-induced airway eosinophilia and neutrophilia in the offspring. Prenatal and postnatal CS exposure increased the frequency of Th2 cells in the lungs of HDM-treated offspring compared to offspring born to air-exposed mothers. Offspring born to CS-exposed mothers showed increased levels of IL-4, IL-5 and IL-13 in bronchoalveolar lavage fluid compared to offspring from air-exposed mothers. Ex-vivo restimulation of lung cells isolated from HDM-treated offspring born to CS-exposed mothers also resulted in increased IL-4 production. Finally, serum immunoglobulins levels of HDM-specific IgE and HDM-specific IgG1 were significantly increased upon a HDM challenge in offspring born to CS-exposed mothers compared to offspring from air-exposed mothers. In summary, our results reveal a biological plausibility for the epidemiological studies indicating that prenatal and postnatal CS exposure increases the susceptibility of offspring to allergic immune responses.


Assuntos
Fumar Cigarros/efeitos adversos , Hipersensibilidade/imunologia , Pulmão/imunologia , Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Hipersensibilidade Respiratória/imunologia , Células Th2/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Masculino , Exposição Materna/efeitos adversos , Camundongos , Camundongos Endogâmicos BALB C , Efeitos Tardios da Exposição Pré-Natal/etiologia , Pyroglyphidae/imunologia , Risco
7.
Front Immunol ; 10: 842, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31080449

RESUMO

Neutrophils are crucial to antimicrobial defense, but excessive neutrophilic inflammation induces immune pathology. The mechanisms by which neutrophils are regulated to prevent injury and preserve tissue homeostasis are not completely understood. We recently identified the collagen receptor leukocyte-associated immunoglobulin-like receptor (LAIR)-1 as a functional inhibitory receptor on airway-infiltrated neutrophils in viral bronchiolitis patients. In the current study, we sought to examine the role of LAIR-1 in regulating airway neutrophil responses in vivo. LAIR-1-deficient (Lair1-/-) and wild-type mice were infected with respiratory syncytial virus (RSV) or exposed to cigarette smoke as commonly accepted models of neutrophil-driven lung inflammation. Mice were monitored for cellular airway influx, weight loss, cytokine production, and viral loads. After RSV infection, Lair1-/- mice show enhanced airway inflammation accompanied by increased neutrophil and lymphocyte recruitment to the airways, without effects on viral loads or cytokine production. LAIR-1-Fc administration in wild type mice, which blocks ligand induced LAIR-1 activation, augmented airway inflammation recapitulating the observations in Lair1-/- mice. Likewise, in the smoke-exposure model, LAIR-1 deficiency enhanced neutrophil recruitment to the airways and worsened disease severity. Intranasal CXCL1-mediated neutrophil recruitment to the airways was enhanced in mice lacking LAIR-1, supporting an intrinsic function of LAIR-1 on neutrophils. In conclusion, the immune inhibitory receptor LAIR-1 suppresses neutrophil tissue migration and acts as a negative regulator of neutrophil-driven airway inflammation during lung diseases. Following our recent observations in humans, this study provides crucial in-vivo evidence that LAIR-1 is a promising target for pharmacological intervention in such pathologies.


Assuntos
Movimento Celular/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Pneumonia/imunologia , Receptores Imunológicos/imunologia , Animais , Bronquiolite Viral/imunologia , Bronquiolite Viral/patologia , Quimiocina CXCL1/imunologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/patologia , Receptores Imunológicos/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sincicial Respiratório Humano/imunologia , Fumaça/efeitos adversos , Nicotiana/toxicidade
8.
Front Physiol ; 8: 155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382003

RESUMO

Aim: Survivors of neonatal chronic lung disease or bronchopulmonary dysplasia (BPD) suffer from compromised lung function and are at high risk for developing lung injury by multiple insults later in life. Because neonatal lysophosphatidic acid receptor-1 (LPAR1)-deficient rats are protected against hyperoxia-induced lung injury, we hypothesize that LPAR1-deficiency may protect adult survivors of BPD from a second hit response against lipopolysaccharides (LPS)-induced lung injury. Methods: Directly after birth, Wistar control and LPAR1-deficient rat pups were exposed to hyperoxia (90%) for 8 days followed by recovery in room air. After 7 weeks, male rats received either LPS (2 mg kg-1) or 0.9% NaCl by intraperitoneal injection. Alveolar development and lung inflammation were investigated by morphometric analysis, IL-6 production, and mRNA expression of cytokines, chemokines, coagulation factors, and an indicator of oxidative stress. Results: LPAR1-deficient and control rats developed hyperoxia-induced neonatal emphysema, which persisted into adulthood, as demonstrated by alveolar enlargement and decreased vessel density. LPAR1-deficiency protected against LPS-induced lung injury. Adult controls with BPD exhibited an exacerbated response toward LPS with an increased expression of pro-inflammatory mRNAs, whereas LPAR1-deficient rats with BPD were less sensitive to this "second hit" with a decreased pulmonary influx of macrophages and neutrophils, interleukin-6 (IL-6) production, and mRNA expression of IL-6, monocyte chemoattractant protein-1, cytokine-induced neutrophil chemoattractant 1, plasminogen activator inhibitor-1, and tissue factor. Conclusion: LPAR1-deficient rats have increased hyperoxia-induced BPD survival rates and, despite the presence of neonatal emphysema, are less sensitive to an aggravated "second hit" than Wistar controls with BPD. Intervening in LPA-LPAR1-dependent signaling may not only have therapeutic potential for neonatal chronic lung disease, but may also protect adult survivors of BPD from sequelae later in life.

9.
Biomaterials ; 34(3): 831-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23117214

RESUMO

As an extracellular protein, the small heat-shock protein alpha B-crystallin (HSPB5) has anti-inflammatory effects in several mouse models of inflammation. Here, we show that these effects are associated with the ability of HSPB5 to activate an immune-regulatory response in macrophages via endosomal/phagosomal CD14 and Toll-like receptors 1 and 2. Humans, however, possess natural antibodies against HSPB5 that block receptor binding. To protect it from these antibodies, we encapsulated HSPB5 in porous PLGA microparticles. We document here size, morphology, protein loading and release characteristics of such microparticles. Apart from effectively protecting HSPB5 from neutralization, PLGA microparticles also strongly promoted macrophage targeting of HSPB via phagocytosis. As a result, HSPB5 in porous PLGA microparticles was more than 100-fold more effective in activating macrophages than free soluble protein. Yet, the immune-regulatory nature of the macrophage response, as documented here by microarray transcript profiling, remained the same. In mice developing cigarette smoke-induced COPD, HSPB5-loaded PLGA microparticles were selectively taken up by alveolar macrophages upon intratracheal administration, and significantly suppressed lung infiltration by lymphocytes and neutrophils. In contrast, 30-fold higher doses of free soluble HSPB5 remained ineffective. Our data indicate that porous HSPB5-PLGA microparticles hold considerable promise as an anti-inflammatory biomaterial for humans.


Assuntos
Anti-Inflamatórios/administração & dosagem , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Pneumonia/complicações , Pneumonia/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/complicações , Cadeia B de alfa-Cristalina/administração & dosagem , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/uso terapêutico , Linhagem Celular , Portadores de Fármacos/química , Proteínas de Choque Térmico Pequenas/administração & dosagem , Proteínas de Choque Térmico Pequenas/imunologia , Proteínas de Choque Térmico Pequenas/uso terapêutico , Humanos , Ácido Láctico/química , Receptores de Lipopolissacarídeos/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pneumonia/imunologia , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/imunologia , Cadeia B de alfa-Cristalina/imunologia , Cadeia B de alfa-Cristalina/uso terapêutico
10.
Lab Invest ; 84(1): 29-40, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14631377

RESUMO

Airway inflammation is a characteristic feature in airway diseases such as asthma and chronic obstructive pulmonary disease. Oxidative stress, caused by the excessive production of reactive oxygen species by inflammatory cells like macrophages, eosinophils and neutrophils, is thought to be important in the complex pathogenesis of such airway diseases. The calcium-sensing regulatory protein calmodulin (CaM) binds and regulates different target enzymes and proteins, including calcium channels. In the present study, we investigated whether CaM, via the modulation of calcium channel function, influences [Ca(2+)](i) in pulmonary inflammatory cells, and consequently, modulates the production of reactive oxygen species by these cells. This was tested with a peptide termed calcium-like peptide 2 (CALP2), which was previously shown to regulate such channels. Specifically, radical production by purified broncho-alveolar lavage cells from guinea-pigs in response to CALP2 was measured. CALP2 was a strong activator of alveolar macrophages. In contrast, CALP2 was only a mild activator of neutrophils and did not induce radical production by eosinophils. The CALP2-induced radical production was mainly intracellular, and was completely blocked by the NADPH-oxidase inhibitor DPI, the superoxide inhibitor SOD and the CaM antagonist W7. Furthermore, the calcium channel blocker lanthanum partly inhibited the cellular activation by CALP2. We conclude that alveolar macrophages, but not neutrophils or eosinophils, can produce extremely high amounts of reactive oxygen species when stimulated via the calcium/CaM pathway. These results may contribute to new therapeutic strategies against oxidative stress in airway diseases.


Assuntos
Calmodulina/metabolismo , Proteínas de Transporte/farmacologia , Macrófagos Alveolares/metabolismo , Peptídeos/farmacologia , Superóxidos/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Cálcio/metabolismo , Agonistas dos Canais de Cálcio/metabolismo , Calmodulina/antagonistas & inibidores , Proteínas de Transporte/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Cobaias , Peptídeos e Proteínas de Sinalização Intercelular , Macrófagos Alveolares/efeitos dos fármacos , Masculino , Oniocompostos/farmacologia , Peptídeos/antagonistas & inibidores , Sulfonamidas/farmacologia , Superóxido Dismutase/farmacologia
11.
Am J Physiol Lung Cell Mol Physiol ; 283(2): L403-8, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12114202

RESUMO

The aim of this study was to determine the effects of glutathione (GSH) on trachea smooth muscle tension in view of previously reported interactions between GSH and nitric oxide (NO) (Gaston B. Biochim Biophys Acta 1411: 323-333, 1999; Kelm M. Biochim Biophys Acta 1411: 273-289, 1999; and Kharitonov VG, Sundquist AR, and Sharma VS. J Biol Chem 270: 28158-28164, 1995) and the high (millimolar) concentrations of GSH in trachea epithelium (Rahman I, Li XY, Donaldson K, Harrison DJ, and MacNee W. Am J Physiol Lung Cell Mol Physiol 269: L285-L292, 1995). GSH and other thiols (1.0-10 mM) dose dependently decreased the tension in isolated guinea pig tracheas. Relaxations by GSH were paralleled with sevenfold increased nitrite levels (P < 0.05) in the tracheal effluent, suggesting an interaction between GSH and NO. However, preincubation with a NO scavenger did not reduce the relaxations by GSH or its NO adduct, S-nitrosoglutathione (GSNO). Inhibition of guanylyl cyclase inhibited the relaxations induced by GSNO, but not by GSH. Blocking potassium channels, however, completely abolished the relaxing effects of GSH (P < 0.05). Preincubation of tracheas with GSH significantly (P < 0.05) suppressed hyperreactivity to histamine as caused by removal of tracheal epithelium. These data indicate that GSH plays a role in maintaining tracheal tone. The mechanism is probably an antioxidative action of GSH itself rather than an action of NO or GSNO.


Assuntos
Glutationa/farmacologia , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Traqueia/efeitos dos fármacos , Traqueia/fisiologia , Animais , Interações Medicamentosas , Cobaias , Histamina/farmacologia , Técnicas In Vitro , Masculino , Peso Molecular , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Óxido Nítrico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA